
memcached connector in jode.js
Functional Specification
Document Version 1.2

memcacheDB connector in node.js

Function Specification

Document Version 1.2

1

memcached connector in jode.js
Functional Specification
Document Version 1.2

Abstract

This Functional Specification gives detailed information about a customer-specific

implementation of a node.js-based connector to a cluster of memcacheDB servers.

Contact Information

If the information you need is not in this document, you can contact the author:

Email: assen.totin@gmail.com

2

mailto:assen.totin@gmail.com

memcached connector in jode.js
Functional Specification
Document Version 1.2

Document Version History

Version Changed by Date Description Checked by

Accepted by
1.0 Assen Totin 03/29/13 Initial Release

1.1 Assen Totin 04/01/13 Added test cases, ch. 9.

1.2 Assen Totin 04/02/13 Separated Release Notes from

Functional Specification

3

memcached connector in jode.js
Functional Specification
Document Version 1.2

Table of Contents
1. About This Document ..5

1.1 Audience ..5

1.2 Typographic conventions ..5

1.3 Terms and concepts ..5

1.3.1 Abbreviations ..5

1.3.2 Terminology ...5

1.4 Related documentation ...6

2. Scope of Work..7

3. Main Functions...8

3.1 Write requests...8

3.2 Read requests...8

3.3 Concurrency...9

4. Effort estimate...10

Appendix A: API..11

4

memcached connector in jode.js
Functional Specification
Document Version 1.2

1. About This Document
This document describes the functionality of a node.js-based connector to a cluster of

memcacheDB servers.

1.1 Audience
This document is intended for technical personnel. Because the descriptions of the

conversions are low level, it is recommended that the reader should be familiar with

node.js and memcacheDB which is being extended.

1.2 Typographic conventions

The following text styles identify special information used in the document:

Bold: bold text is used to call attention.

Italics: Italicised text is used to emphasize the specific meaning of the words.

Fixed-width: Fixed-width font is used for presenting user input.

N ote: Notes are written between two lines to point to important issues.

1.3 Terms and concepts

The following abbreviations, terms and concepts are used in the document:

1.3.1 Abbreviations

None used.

1.3.2 Terminology

memcacheDB An persistent data storage which keeps the data in a hash (key-
value pairs), capable of multi-server (clustered) networked
operation. See www.memcachedb.org for details.

node.js An event-driven framework for building scalable networked
applications. See www.nodejs.org for details.

5

http://www.nodejs.org/
http://www.memcached.org/

memcached connector in jode.js
Functional Specification
Document Version 1.2

1.4 Related documentation

No related documentation is required.

6

memcached connector in jode.js
Functional Specification
Document Version 1.2

2. Scope of Work

The project consist of:

• Creating a connector (library) which runs on top of a node.js engine and helps

connects to a cluster of memcacheDB servers.

7

memcached connector in jode.js
Functional Specification
Document Version 1.2

3. Main Functions
The main function of the memcacheDB connector is to help a node.js application exchange

data with a cluster of memcacheDB servers.

3.1 Write requests

The memcacheDB connector will automatically determine which member of the cluster is a

master server and will send all write requests only to it.

If the current master changes or becomes unavailable, the connector will query who is the

new master (as elected by memcacheDB cluster) and will begin using it for write queries. A

failed write request will be resent to the new master.

3.2 Read requests

If more than one slave member is available, requests will be distributed between them in a

round-robin fashion.

If there is only one slave, it will receive all read requests.

If there is only one member left in the cluster (stand-alone master), it will also receive the

read requests (along to write requests).

If a slave member becomes master, it will not be used for read queries (as long as there are

other slave members).

If a slave member becomes unavailable, the connector will stop sending requests to it. A

failed read request will be resent to another available slave (or to the stand-alone master).

The connector will check periodically the slave list and if a slave has become available

8

memcached connector in jode.js
Functional Specification
Document Version 1.2

again and after such check succeeds, requests will once again be sent to this member.

Note: This allows the administrator to add slaves which have not been provisioned to

the connector when it started. However, because the connector will not know the

TCP port of the new slave, it must operate on the default memcaheDB port of 21201.

3.3 Concurrency

When initialized, the connector will launch several concurrent worker connections to each

server. This connections will be reused when communicating with the servers. If there is

pending data, but all connections to the given server are used, the connector will spawn a

new worker for this server.

The connector will periodically monitor the number of workers for each server and will

reduce them if there are too many unused workers. The reduction rule is as follows:

• If the total number of workers is more than twice the minimum number of workers,

and

• If there are more idle workers than busy workers,

• Then remove ½ of the idle workers.

9

memcached connector in jode.js
Functional Specification
Document Version 1.2

4. Effort estimate
Implementation of the project will require the following resources:

Task Estimate,
man-hours

General

Documentation: Functional specification 4

Documentation: Release notes 4

Programming

Generic memcacheDB client 8

Master/slaves detection 4

Slaves round-robin load balancing 4

Per-server connection pool management 4

Failed slave detection 2

Failed slave periodical check 4

Testing and QA

Generic memcacheDB client 4

Master/slaves detection 2

Slaves round-robin load balancing 2

Per-server connection pool management 1

Failed slave detection 1

Failed slave periodical check 2

Packaging and Delivery

Packaging 1

Delivery 1

TOTAL: 48

10

memcached connector in jode.js
Functional Specification
Document Version 1.2

Appendix A: API

The following public methods are described below. For limitations regarding allowed values

and sized of memcacheDB-related parameters, refer to memcacheDB documentation.

new(['A.B.C.D:E', …], {'param':value})

Description: Creates a new connector.

Arguments:

• Array of strings. Each member is a server IP address and port, e.g.

192.168.0.1:21201. Mandatory.

• Object where keys are internal parameters and values are their desired values:

• default_host: host to use if first argument is empty (default: localhost)

• default_port: port if first argument is empty (default: 21201)

• default_workers: how many workers to spawn by default for each server

(default: 3)

• default_interval_cleanup_workers: how often to clean up unneeded workers

(time in ms, default is 3600000, i.e.1 hour)

• default_interval_check_slaves: how often to check for changes in slaves (time

in ms, default is 120000, i.e. 10 minutes)

• debug: whether to display debugging information (default is 0)

.get(key, callback(err, data))

Description: Fetches data by the specified key. The data is sent to the provided callback

function.

Arguments:

• key: ASCII string to be used as memcacheDB lookup key. Mandatory.

11

memcached connector in jode.js
Functional Specification
Document Version 1.2

• callback: function to be called when the data is available. Mandatory. Arguments:
• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

.set(key, value, callback(err, data), lifetime, flags)

Description: Sets the specified key ro the specified value. The data is sent to the provided

callback function.

Arguments:

• key: ASCII string to be used as memcacheDB lookup key. Mandatory.
• value: the value to be stored in memcacheDB. Mandatory.
• callback: function to be called when the data is available. Optional. Arguments:

• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

• lifetime: the lifetime of the record. Will be ignored by the memcacheDB. Optional.

• flasg: flags for record. Optional.

.add(key, value, callback(err, data), lifetime, flags)

Description: Sets the specified key to the specified value if it does not already exist.

Arguments: same as for .set()

.replace(key, value, callback(err, data), lifetime, flags)

Description: Sets the specified key to the specified value if it already exists.

Arguments: same as for .set()

.append(key, value, callback(err, data), lifetime, flags)

Description: Appends the specified value to the value of specified key.

Arguments: same as for .set()

12

memcached connector in jode.js
Functional Specification
Document Version 1.2

.prepend(key, value, callback(err, data), lifetime, flags)

Description: Prepends the specified value to the value of specified key.

Arguments: same as for .set()

.cas(key, value, unique, callback(err, data), lifetime, flags)

Description: Checks and sets the specified key to the specified value.

Arguments: same as for .set(), plus:

• unique: unique key to use for checking.

.delete(key, callback(err, data))

Description: Deletes the key and its value.

Arguments:

• key: ASCII string to be used as memcacheDB lookup key. Mandatory.
• callback: function to be called when the operation completes. Optional. Arguments:

• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

.version(callback(err, data))

Description: returns the version of the memcacheDB server.

Arguments:

• callback: function to be called when the operation completes. Mandatory.
Arguments:

• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

.increment(key, value, callback(err, data))

13

memcached connector in jode.js
Functional Specification
Document Version 1.2

Description: Increments the value, specified by the key, with the provided value.

Arguments:

• key: ASCII string to be used as memcacheDB lookup key. Mandatory.
• Value: the value to use for increment.
• callback: function to be called when the operation completes. Optional. Arguments:

• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

.decrement(key, value, callback(err, data))

Description: Decrements the value, specified by the key, with the provided value.

Arguments: same as for .increment()

.stats(type, callback(err, data))

Description: Increments the value, specified by the key, with the provided value.

Arguments:

• type: ASCII string, the name o fthe type of statistics to be retrieved from the
memcacheDB lookup key. Mandatory.

• callback: function to be called when the operation completes. Mandatory.
Arguments:

• err: null if no error occurred, error identity otherwise
• data: the data, received from the memcacheDB

.close()

Description: Closes the connector.

Arguments: none

14

	1. About This Document
	1.1 Audience
	1.2 Typographic conventions
	1.3 Terms and concepts
	1.3.1 Abbreviations
	1.3.2 Terminology

	1.4 Related documentation

	2. Scope of Work
	3. Main Functions
	3.1 Write requests
	3.2 Read requests
	3.3 Concurrency

	4. Effort estimate
	Appendix A: API

