
memcached connector in jode.js
Release Notes
Document Version 1.2

memcacheDB connector in node.js

Release Notes

Document Version 1.2

1

memcached connector in jode.js
Release Notes
Document Version 1.2

Abstract

This Functional Specification gives detailed information about a customer-specific

implementation of a node.js-based connector to a cluster of memcacheDB servers.

Contact Information

If the information you need is not in this document, you can contact the author:

Email: assen.totin@gmail.com

2

mailto:assen.totin@gmail.com

memcached connector in jode.js
Release Notes
Document Version 1.2

Document Version History

Version Changed by Date Description Checked by

Accepted by
1.0 Assen Totin 03/29/13 Initial Release

1.1 Assen Totin 04/01/13 Added test cases, ch. 9.

1.2 Assen Totin 04/02/13 Separated Release Notes from

Functional Specification

3

memcached connector in jode.js
Release Notes
Document Version 1.2

Table of Contents
1. About This Document ..5

1.1 Audience ..5

1.2 Typographic conventions ..5

1.3 Terms and concepts ..5

1.3.1 Abbreviations ..5

1.3.2 Terminology ...5

1.4 Related documentation ...6

2. Code and Licensing..7

3. Deliverables..8

4. System Requirements ..9

5. Installation and Configuration..10

5.1 Prerequisites ..10

5.2 Installation procedure for the connector..10

5.3 Configuration of applications..10

5.3.1. Initializing the connector..10

5.3.2. Sending queries...11

6. Test Cases...12

6.1 Test Suit A..12

6.1 Test Suit B..12

6.3 Test Suit C..13

4

memcached connector in jode.js
Release Notes
Document Version 1.2

1. About This Document
This document describes the installation and configuration of a node.js-based connector to

a cluster of memcacheDB servers.

1.1 Audience
This document is intended for technical personnel. Because the descriptions of the

conversions are low level, it is recommended that the reader should be familiar with

node.js and memcacheDB which is being extended.

1.2 Typographic conventions

The following text styles identify special information used in the document:

Bold: bold text is used to call attention.

Italics: Italicised text is used to emphasize the specific meaning of the words.

Fixed-width: Fixed-width font is used for presenting user input.

N ote: Notes are written between two lines to point to important issues.

1.3 Terms and concepts

The following abbreviations, terms and concepts are used in the document:

1.3.1 Abbreviations

IETF Internet Engineering Task Force. IETF is the main technical
authority regarding technical standards on the Internet. See
www.ietf.org for details.

RFC Request for Comments – the formal name for most Internet
standards as accepted by IETF.

1.3.2 Terminology

5

http://www.ietf.org/

memcached connector in jode.js
Release Notes
Document Version 1.2

DEFLATE Losless data compression algorithm as specified in RFC 1951.
Implemented in popular utilities like compess and gzip for Unix,
PKZIP for MS-DOS, WinZip for Micsofot Windows etc.

memcacheDB An persistent data storage which keeps the data in a hash (key-
value pairs), capable of multi-server (clustered) networked
operation. See www.memcachedb.org for details.

node.js An event-driven framework for building scalable networked
applications. See www.nodejs.org for details.

tape archive format A format for archiving multiple files in a single container using
concatenation. Implemented in the tar Unix utility.

1.4 Related documentation

• node.js Connector Functional Specification

6

http://www.nodejs.org/
http://www.memcached.org/

memcached connector in jode.js
Release Notes
Document Version 1.2

2. Code and Licensing

The connector, developed under this project, is delivered free of any license.

The node.js engine is not be modified within this project and will, therefore, retain its

original license.

The memcacheDB engine is not be modified within this project and will, therefore, retain

its original license.

7

memcached connector in jode.js
Release Notes
Document Version 1.2

3. Deliverables

The following will be delivered under this project:

• The source code, developed under the project, archived using tape archive format

and further compressed using the DEFLATE algorithm.

• Functional Specification.

• Release Notes.

8

memcached connector in jode.js
Release Notes
Document Version 1.2

4. System Requirements

The project requires:

• A node.js server.

• A cluster of memcacheDB servers.

9

memcached connector in jode.js
Release Notes
Document Version 1.2

5. Installation and Configuration

5.1 Prerequisites
Installing the package may require local administrative privileges.

5.2 Installation procedure for the connector

1. Log on to the server which runs the node.js.

2. Obtain local administrative privileges.

3. Uncompress and unarchive the supplied sources.

4. Copy the lib directory to a suitable location where it can be included by the

applications using it.

5.3 Configuration of applications

5.3.1. Initializing the connector

var memdb = require('/path/to/lib/memdb');

Replace the path with the actual path to the lib directory of the connctor.

MemdbClient = new

memdb.MemdbClient(['127.0.0.1:21201','10.10.10.2:21202']);

Replace the IP addresses and ports with the actual ones.

Note: If no IP addresses are given, one default host at 127.0.0.1:21201 is used.

Note: Each memcacheDB server should use an unique IP address.

10

memcached connector in jode.js
Release Notes
Document Version 1.2

5.3.2. Sending queries

All queries should be sent to the initialized instance. It will take care to automatically

distribute the load among servers.

Writing example:

MemdbClient.set('some_key', 'some_value', function(err, data) {

// Some callback function code

}, 0, 0);

Reading example:

MemdbClient.get('some_key', function(err, data) {

// Some callback function code

});

For full API list, see the Functional Specification, Appendix A.

5.3.3. Closing the connection

MemdbClient.close();

11

memcached connector in jode.js
Release Notes
Document Version 1.2

6. Test Cases
The following test cases have been run on the project.

6.1 Test Suit A

Start one master server (M) and two slave servers (S1, S2).

No Test Case Scenario Status

1 Master and slaves should be properly
recognized. All write requests
should go to master, all read
requests to slaves in round robin.

With M, S1, S2 working: M should get all
write requests; read requests should be
sent to S1 and S2 in a round-robin
fashion.

PASS

2 Skip slaves that have failed. Stop S2: now all read requests go to S1. PASS

3 Failed read requests should
automatically be forwarded to
another slave.

After stopping the S2, the failed read
request goes to S1.

PASS

4 If all slaves are gone, the master
gets both read and write requests.

Stop S1: now all read requests go to M. PASS

5 Periodically check the slaves list and
use any new slave that has come
online.

Bring back up S1 and S2. After the
periodic check, the read requests will be
transferred from M to S1 and S2.

PASS

6.1 Test Suit B

Start one master server (M) and two slave servers (S1, S2).

No Test Case Scenario Status

1 Get new master from slaves when
old master have failed.

Stop M. S1 and S2 will elect a new
master, Mn. Upon next write request, Mn
will be detected as master. All write
requests should go to Mn and all read
requests to the remaining slave.

PASS

2 Failed read requests should
automatically be forwarded to the
new master.

After stopping the M, the failed read
request goes to Mn.

PASS

12

memcached connector in jode.js
Release Notes
Document Version 1.2

6.3 Test Suit C

Run one master server (M) and one slave server (S).

No Test Case Scenario Status

1 Spawn new connections on demand
(when there are no enough
connections to handle requests for a
given slave).

Quickly (ina loop) send 10 read requests
which all go to S. Since 10 is more that
the default number of connections (3), 7
new connections will be spawned.

PASS

2 Clean-up unnecessary connections
when they are not in use.

After the check for excessive connections
runs, it will detect that:
* the number of connections (10) is more
than the threshold (2 times the minimum
number of connections or 6) , and
* the number of idle connections is more
that the number of busy connections, so

½ of the unused connections will be shut
down.

PASS

13

	1. About This Document
	1.1 Audience
	1.2 Typographic conventions
	1.3 Terms and concepts
	1.3.1 Abbreviations
	1.3.2 Terminology

	1.4 Related documentation

	2. Code and Licensing
	3. Deliverables
	4. System Requirements
	5. Installation and Configuration
	5.1 Prerequisites
	5.2 Installation procedure for the connector
	5.3 Configuration of applications
	5.3.1. Initializing the connector
	5.3.2. Sending queries

	6. Test Cases
	6.1 Test Suit A
	6.1 Test Suit B
	6.3 Test Suit C

